137 research outputs found

    On the Outage Capacity of Correlated Multiple-Path MIMO Channels

    Full text link
    The use of multi-antenna arrays in both transmission and reception has been shown to dramatically increase the throughput of wireless communication systems. As a result there has been considerable interest in characterizing the ergodic average of the mutual information for realistic correlated channels. Here, an approach is presented that provides analytic expressions not only for the average, but also the higher cumulant moments of the distribution of the mutual information for zero-mean Gaussian (multiple-input multiple-output) MIMO channels with the most general multipath covariance matrices when the channel is known at the receiver. These channels include multi-tap delay paths, as well as general channels with covariance matrices that cannot be written as a Kronecker product, such as dual-polarized antenna arrays with general correlations at both transmitter and receiver ends. The mathematical methods are formally valid for large antenna numbers, in which limit it is shown that all higher cumulant moments of the distribution, other than the first two scale to zero. Thus, it is confirmed that the distribution of the mutual information tends to a Gaussian, which enables one to calculate the outage capacity. These results are quite accurate even in the case of a few antennas, which makes this approach applicable to realistic situations.Comment: submitted for publication IEEE Trans. Information Theory; IEEEtran documentstyl

    Interference Management in 5G Reverse TDD HetNets with Wireless Backhaul: A Large System Analysis

    Get PDF
    This work analyzes a heterogeneous network (HetNet), which comprises a macro base station (BS) equipped with a large number of antennas and an overlaid dense tier of small cell access points (SCAs) using a wireless backhaul for data traffic. The static and low mobility user equipment terminals (UEs) are associated with the SCAs while those with medium-to-high mobility are served by the macro BS. A reverse time division duplexing (TDD) protocol is used by the two tiers, which allows the BS to locally estimate both the intra-tier and inter-tier channels. This knowledge is then used at the BS either in the uplink (UL) or in the downlink (DL) to simultaneously serve the macro UEs (MUEs) and to provide the wireless backhaul to SCAs. A geographical separation of co-channel SCAs is proposed to limit the interference coming from the UL signals of MUEs. A concatenated linear precoding technique employing either zero-forcing (ZF) or regularized ZF is used at the BS to simultaneously serve MUEs and SCAs in DL while nulling interference toward those SCAs in UL. We evaluate and characterize the performance of the system through the power consumption of UL and DL transmissions under the assumption that target rates must be satisfied and imperfect channel state information is available for MUEs. The analysis is conducted in the asymptotic regime where the number of BS antennas and the network size (MUEs and SCAs) grow large with fixed ratios. Results from large system analysis are used to provide concise formulae for the asymptotic UL and DL transmit powers and precoding vectors under the above assumptions. Numerical results are used to validate the analysis in different settings and to make comparisons with alternative network architectures.Comment: 14 pages, 12 figures. To appear IEEE J. Select. Areas Commun. -- Special Issue on HetNet
    • …
    corecore